If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+4k-16=80
We move all terms to the left:
k^2+4k-16-(80)=0
We add all the numbers together, and all the variables
k^2+4k-96=0
a = 1; b = 4; c = -96;
Δ = b2-4ac
Δ = 42-4·1·(-96)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-20}{2*1}=\frac{-24}{2} =-12 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+20}{2*1}=\frac{16}{2} =8 $
| -4(x+1)+16=20 | | -5(x+8)-2=-42 | | -2(10+5x)+10=2x-11 | | 3y-3.6=4.4 | | 4+5n=5n+8 | | 3x-7=(x-5) | | 3/(4x)-5/(6x)=1/6 | | 7x=9x-32 | | n+17=-74 | | 12x+20=140 | | m-(-10)=2 | | 3w=2w+w | | 11x-14=12x | | -8f+3+4=31 | | 25x+2=81 | | 1.5=20n | | 6+10k=10k | | 4x+19=5x-4 | | .02x-0.5=0.1x+7 | | 22x+3=100 | | 8x+60=60 | | m-4+3=-10•2 | | n+82=547 | | 22x+2=100 | | 1n+n=11 | | -9y+60=20y+2 | | 5/6x2x4/3=5/3 | | 3x+8=3x-8 | | 547=n+82 | | x+8+3x-11+x+8+x+2x+7=540 | | 5/6x-2x4/3=5/3 | | (y-4)2=2y-8 |